زیرگروه جابجاگر و مرکزساز یک اتومورفیسم

thesis
abstract

فرض کنیم ‎φ یک اتومورفیسم از گروه ‎g باشد. در این پایان نامه مرکزساز ‎φ‎ در ‎g‎ به صورت ‎cg(φ) = {x ∈ g∣φ(x) = x}‎ و جابجاگر ‎φ‎ در ‎g را با نماد [‎[g,φ نشان داده و به صورت ‎[g,φ] = ⟨x−1φ(x)∣x ∈ g⟩‎ تعریف می کنیم. در فصل ‎2‎ عمل(‎cg(φ روی زیرگروه جابجاگر[‎[g,φ را وقتی که ‎g چنددوری یا متاآبلی باشد مورد بررسی قرار داده ایم. نتایج مهمی که بر اساس این عمل به دست می آید عبارتند از :‎ قضیه ‎(1)‎ : اگر ‎φ یک اتومورفیسم از مرتبه ‎2‎ از یک گروه چنددوری ‎g‎ و (‎cg(φ متناهی باشد آنگاه ′[‎[g,φ نیز متناهی است. ‎‎ قضیه ‎(2)‎ : اگر ‎φ یک اتومورفیسم از یک گروه چنددوری ‎g‎ و(‎cg(φ متناهی باشد آنگاه[‎‎ g/[g,φنیز متناهی است‎.‎ قضیه ‎(3)‎ : اگر ‎φ‎ یک اتومورفیسم از مرتبه متناهی از گروه چنددوری ‎g باشد آنگاه اندیس [‎cg(φ)[g,φ در ‎g‎ متناهی است.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

وجود یک زیرگروه جابجاگر بزرگ

با قرار دادن شرایطی روی گروه می توان کران هایی برای اندازه زیرگروه مشتق بدست آورد. در هر گروه متناهی زیرگروهی از مشتق آن به نام باقیمانده پوچتوان وجود دارد. باقیمانده پوچتوان کوچکترین زیرگروه نرمال از گروه است که خارج قسمت آن پوچتوان است. برای یک گروه متناهی ارتباط بین اندازه باقیمانده پوچتوان و مرکز گروه را مطالعه میکنیم و ثابت میکنیم اگر گروه حل پذیر باشد به طوری که زیرگروه فراتینی و مرکز آن ...

15 صفحه اول

مرکزساز و زیرگروه جابه جاگر یک خودریختی

هدف از این پایان نامه مطالعه تأثیر مرکزساز(?) ‎c_g‎ روی زیرگروه جابه جاگر ‎[g, ?]‎ است, به خصوص زمانی که ‎g‎ گروهی چنددوری یا دوآبلی ‏و ? ‎ یک خودریختی از گروه ‎g‎ باشد‏.‎‎ فرض کنید ‎g‎ یک گروه چنددوری و‎ ? یک خودریختی از ‎g‎ باشد. در این پایان نامه نشان داده می شود که اگر ? ‎ از مرتبه ی ‎2‎ و ‎(?) ‎c_g‎ متناهی باشد آنگاه ‎g/[g, ? ‎] و ‎ ‎?[g,? ‎] ?^?نیز متناهی اند. همچنین ثابت می شود که اگر‎g...

زیرگروه های یک زیرگروه زیرنرمال در یک حلقه تقسیم

فرض کنیدdیک حلقه تقسیم با مرکز f و گروه ضربی *^d باشد. در این پایان نامه ساختار زیرگروهی از زیرگروه زیرنرمال دلخواه g از *^d را مورد بررسی قرار می دهیم. به طور خاص نشان می دهیم که اگر d موضعا متناهی باشد، آنگاه g شامل یک زیرگروه آزاد غیردوری است.همچنین ساختار زیرگروه های ماکسیمال g را مورد بررسی قرار می دهیم.

زیرگروه خودجابجاگر یک گروه

در این پایان نامه ، زیرگروه خودجابجاگر و مرکز مطلق یک گروه معرفی می شوند. می توان مشتق و مرکز یک گروه را برحسب خود ریختیهای داخلی آن گروه تعریف کرد.حال اگر به جای خود ریختیهای داخلی گروه خودریختیهای گروه را در نظر بگیریم به ترتیب زیرگروه خودجابجاگر و مرکز مطلق گروه بدست می آیدوبه وسیله آنها یکی از نتایج معروف شور را تعمیم می دهیم.همچنین کران هایی برای آنها ارائه می دهیم در ادامه گروه های دوری ر...

15 صفحه اول

صد سال با مرکزساز عضوهای گروه

مطالعۀ تاریخ ریاضی علاوه بر ادای دین نسبت به پیشگامان و تلاشگران این حوزۀ علمی، نحوۀ تکامل موضوعات ریاضی را نیز آشکار می کند. به ویژه ریاضی خوانان جوان طی مطالعۀ تاریخ ریاضی با جریان فکری حاکم بر فرآیند کشف قضیه های ریاضی آشنا می شوند و خود می توانند مستقلا به بازآفرینی روند حل مسائل و یادگیری عمیق ریاضی بپردازند. در این مقاله، تاریخچه ای از تعریف و به کارگیریِ مرکزساز عضوهای گروه ها را در شناسا...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده ریاضی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023